

Data Sheet

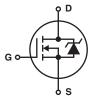
January 2002

50A, 50V, 0.022 Ohm, Logic Level, N-Channel Power MOSFETs

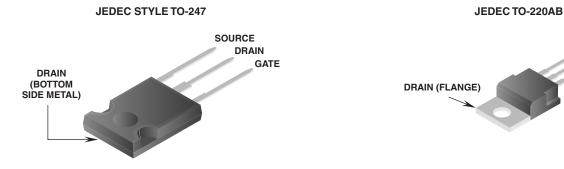
These are logic-level N-channel power MOSFETs manufactured using the MegaFET process. This process, which uses feature sizes approaching those of LSI integrated circuits gives optimum utilization of silicon, resulting in outstanding performance. They were designed for use with logic-level (5V) driving sources in applications such as programmable controllers, automotive switching, switching regulators, switching converters, motor relay drivers and emitter switches for bipolar transistors. This performance is accomplished through a special gate oxide design which provides full rated conductance at gate bias in the 3V - 5V range, thereby facilitating true on-off power control directly from integrated circuit supply voltages.

Formerly developmental type TA09872.

Ordering Information


PART NUMBER	PACKAGE	BRAND
RFG50N05L	TO-247	RFG50N05L
RFP50N05L	TO-220AB	RFP50N05L

NOTE: When ordering, use the entire part number. Add the suffix 9A to obtain the TO-263AB variant in the tape and reel, i.e., RFP50N05L9A.


Features

- 50A, 50V
- r_{DS(ON)} = 0.022Ω
- UIS SOA Rating Curve (Single Pulse)
- · Design Optimized for 5V Gate Drive
- · Can be Driven Directly from CMOS, NMOS, TTL Circuits
- · Compatible with Automotive Drive Requirements
- SOA is Power Dissipation Limited
- Nanosecond Switching Speeds
- Linear Transfer Characteristics
- High Input Impedance
- Majority Carrier Device
- Related Literature
 - TB334 "Guidelines for Soldering Surface Mount Components to PC Boards"

Symbol

Packaging

SOURCE

GATE

Absolute Maximum Ratings $T_C = 25^{\circ}C$, Unless Otherwise Specified

	RFG50N05L	RFP50N05L	UNITS
Drain to Source Voltage (Note 1)	50	50	V
Drain to Gate Voltage (R_{GS} = 20k Ω) (Note 1) V _{DGR}	50	50	V
Continuous Drain CurrentI _D Pulsed Drain Current (Note 3)I _{DM}	50 130	50 130	A A
Gate to Source Voltage V_{GS}	±10	±10	V
Maximum Power Dissipation	110 0.88	110 0.88	W W/ ^o C
Single Pulse Avalanche Energy Rating	Refer to UIS	SOA Curve	-
Operating and Storage Temperature	-55 to 150	-55 to 150	°C
Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10sT _L Package Body for 10s, See Techbrief 334T _{pkg}	300 260	300 260	°C °C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

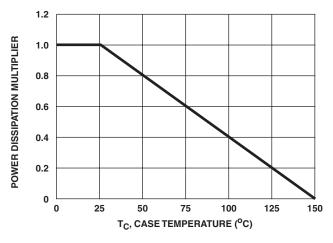
NOTE:

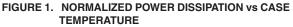
1. $T_J = 25^{\circ}C$ to $125^{\circ}C$.

Electrical Specifications $T_C = 25^{\circ}C$, Unless Otherwise Specified

PARAMETER	SYMBOL	TEST CON	IDITIONS	MIN	ТҮР	MAX	UNITS
Drain to Source Breakdown Voltage	BV _{DSS}	$I_D = 250 \mu A$, $V_{GS} = 0V$ (Figure 10)		50	-	-	V
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}$, $I_D = 250 \mu A$ (Figure 9)		1	-	2	V
Zero Gate Voltage Drain Current	I _{DSS}	DSS $V_{DS} = Rated BV_{DSS}, V_{GS} = 0$		-	-	25	μΑ
		$V_{DS} = 0.8 \text{ x}$ Rated BV _{DSS} , $V_{GS} = 0$, $T_C = 150^{\circ}C$		-	-	250	μΑ
Gate to Source Leakage Current	I _{GSS}	$V_{GS} = \pm 10V, V_{DS} = 0V$		-	-	±100	nA
Drain to Source On Resistance (Note 2)	rDS(ON)	$I_D = 50A, V_{GS} = 5V$ (Figure 7) $I_D = 50A, V_{GS} = 4V$		-	-	0.022	Ω
				-	-	0.027	Ω
Turn-On Time	t _(ON)	$V_{GS} = 5V, R_{GS} = 2.5\Omega, R_L = 1\Omega$ (Figures 12, 15, 16)		-	-	100	ns
Turn-On Delay Time	t _{D(ON)}			-	15	-	ns
Rise Time	t _r			-	50	-	ns
Turn-Off Delay Time	t _{D(OFF)}			-	50	-	ns
Fall Time	t _f			-	15	-	ns
Turn-Off Time	t _(OFF)			-	-	100	ns
Total Gate Charge	Q _{G(TOT)}	$V_{GS} = 0 \text{ to } 10V$ $V_{DD} = 40V, I_D = 50A$ $V_{GS} = 0 \text{ to } 5V$ $R_L = 0.8\Omega$ (Figures 17, 18)		-	-	140	nC
Gate Charge at 5V	Q _{G(5)}		-	-	80	nC	
Threshold Gate Charge	Q _{G(th})	$V_{GS} = 0 \text{ to } 1V$		-	-	6	nC
Thermal Resistance Junction to Case	R _{θJC}		·	-	-	1.14	°C/W
Thermal Resistance Junction to Ambient	R _{0JA}			-	-	80	°C/W

Source to Drain Diode Specifications


PARAMETER	SYMBOL	TEST CONDITIONS	MIN	ТҮР	MAX	UNITS
Source to Drain Diode Voltage (Note 2)	V _{SD}	I _{SD} = 50A	-	-	1.5	V
Diode Reverse Recovery Time	t _{rr}	I_{SD} = 50A, dI _{SD} /dt = 100A/µs	-	-	1.25	ns


NOTES:

2. Pulsed: pulse duration = 300μ s maximum, duty cycle = 2%.

3. Repititive rating: pulse width limited by maximum junction temperature.

Typical Performance Curves

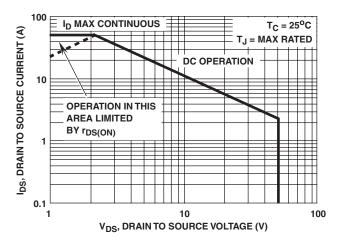
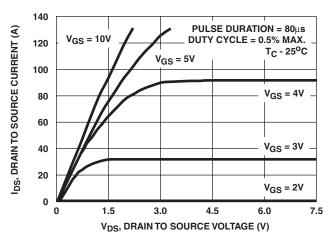



FIGURE 3. FORWARD BIAS SAFE OPERATING AREA

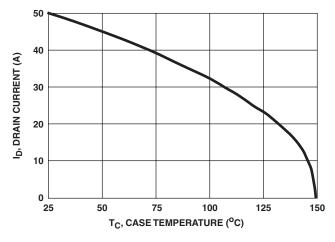
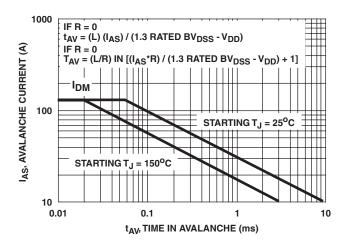



FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE

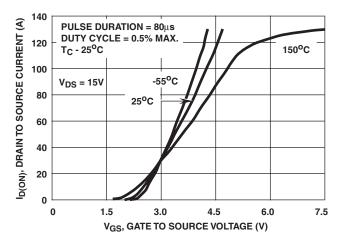
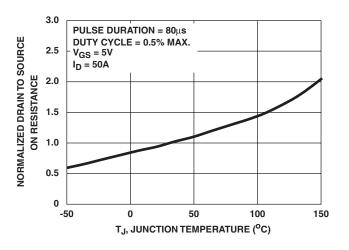



FIGURE 6. TRANSFER CHARACTERISTICS

Typical Performance Curves (Continued)

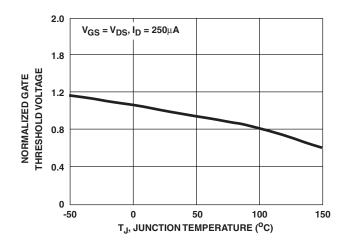


FIGURE 9. NORMALIZED GATE THRESHOLD VOLTAGE

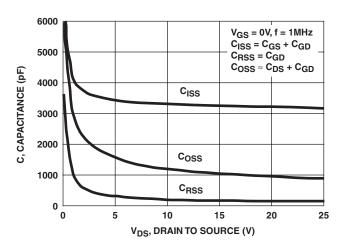


FIGURE 11. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE

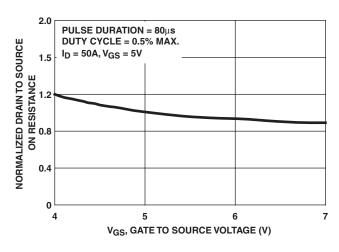


FIGURE 8. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs GATE VOLTAGE

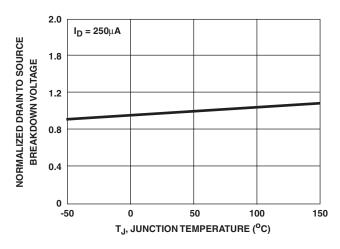
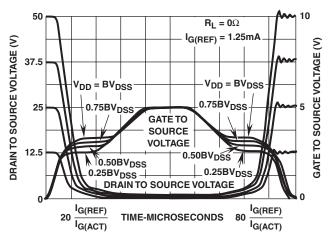



FIGURE 10. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE

NOTE: Refer to Fairchild Application Notes AN7254 and AN7260. FIGURE 12. NORMALIZED SWITCHING WAVEFORMS FOR CONSTANT GATE CURRENT

Test Circuits and Waveforms

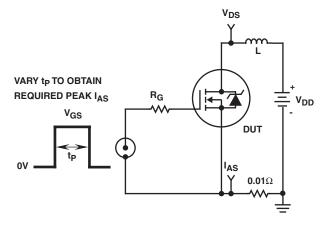


FIGURE 13. UNCLAMPED ENERGY TEST CIRCUIT

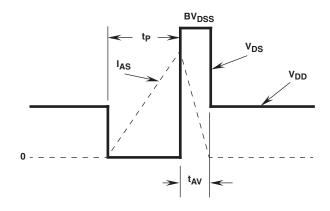


FIGURE 14. UNCLAMPED ENERGY WAVEFORMS

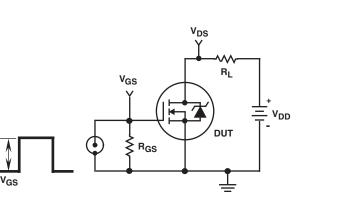


FIGURE 15. SWITCHING TIME TEST CIRCUIT

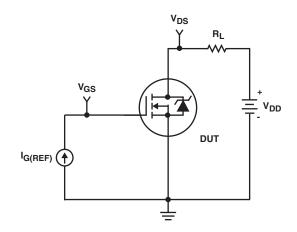


FIGURE 17. GATE CHARGE TEST CIRCUIT

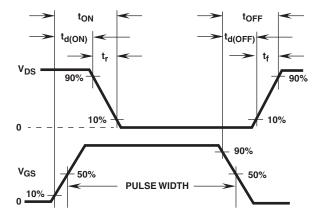


FIGURE 16. RESISTIVE SWITCHING WAVEFORMS

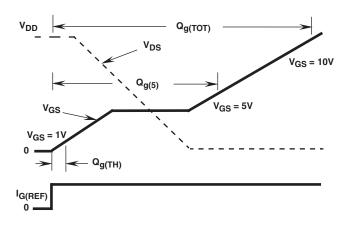


FIGURE 18. GATE CHARGE WAVEFORMS

TRADEMARKS

The following are registered and unregistered tadem arks Fairchild Sem conductor owns or is authorized to use and is not intended to be an exhaustive list of all such tradem arks.

ACEx[™] Bottom bss[™] CooFET[™] CROSSVOLT[™] DenseTrench[™] DOME[™] EcoSPARK[™] EcoSPARK[™] ErSigna[™] FACT[™] FACTQuietSeries[™]

 FAST
 ®
 OPTOI

 FAST™
 OPTOI

 FRFET™
 PACM

 G bbaD ptoisolator™
 POP™

 GTO™
 Powen

 HSeC™
 Powen

 DOPLANAR™
 QFET™

 LittleFET™
 QS™

 MicnoFET™
 QTOP

 MICROW RE™
 SILENT

OPTOLOG C[™] OPTOPLANAR[™] PACMAN[™] POP[™] Power247[™] PowerTrench[®] QFET[™] QS[™] QTOptoelectronics[™] QuietSeries[™] SILENTSW ITCHER[®]

SM ART START[™] VCX[™] STAR *POW ER[™] Stealh[™] SuperSOT[™] -3 SuperSOT[™] -6 SuperSOT[™] -8 SyncFET[™] TinyLogic[™] TruTranslation[™] UHC[™] U haFET[®]

STAR * POWER is used under license

DISCLAMER

FARCHILD SEM CONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN.FARCHILD DOES NOTASSUME ANY LIABILITY AR SING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FARCHID'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FARCHID SEM CONDUCTOR CORPORATION. As used herein:

1. Life support devices or system s are devices or system s which, (a) are intended for surgical in plant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Term s

Product Status	Definition
Fom ative or In Design	This datasheet contains the design specifications for product developm ent. Specifications m ay change in any m anner w inout notice.
Fist Production	This datasheet contains puelin inary data, and supplementary data will be published at a later date. Fairchild Sem iconductor reserves the right to make changes at any time without notice in order to improve design.
FullProduction	This datasheet contains final specifications. Fairchild Sem conductor reserves the right to make changes at any time without notice in order to improve design.
Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild sem iconductor. The datasheet is printed for reference information only.
	Form ative or In Design First Production Full Production